Induction of Fuzzy Rules by Means of Artificial Immune Systems in Bioinformatics

نویسندگان

  • Filippo Menolascina
  • Vitoantonio Bevilacqua
  • Mariadele Zarrilli
  • Giuseppe Mastronardi
چکیده

Fuzzy Rule Induction (FRI) is one of the main areas of research in the field of computational intelligence. Recently FRI has been successfully employed in the field of data mining in bioinformatics [34, 38]. Thanks to its flexibility and potentialities FRI allowed researchers to extract rules that can be easily modeled in natural language and submitted to experts in the field that can validate their accuracy or consistency. The process of FRI can result to be highly complex from a computational complexity point of view and, for this reason, several alternative approaches to accomplish this process have been proposed ranging from iterative and simultaneous algorithms [22] to Genetic Algorithms and Ant Colony Optimization based approaches [22]. In this chapter we will focus on a specific application of type-1 (T1) and type-2(T2) fuzzy systems to data mining in bioinformatics in which FRI is carried out using a novel and promising computational paradigm, namely Artificial Immune Systems (AIS). In order to provide the reader with the necessary theoretical background we will go through a brief introduction to the fields of AIS and T2 Fuzzy Systems, then we will set up the scientific context and describe applications of these concepts to real world cases. Conclusions and cues for future work in this fascinating field will be provided in the end.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speed Boosting Induction of Fuzzy Rules with Artificial Immune Systems

The paper introduces a speed boosting extension to a novel induction of fuzzy rules from raw data using Artificial Immune System methods. The modified algorithm was experimentally proved to be several times faster than

متن کامل

Design On-Line Tunable Gain Artificial Nonlinear Controller

One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...

متن کامل

Design On-Line Tunable Gain Artificial Nonlinear Controller

One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...

متن کامل

Developing a Course Recommender by Combining Clustering and Fuzzy Association Rules

Each semester, students go through the process of selecting appropriate courses. It is difficult to find information about each course and ultimately make decisions. The objective of this paper is to design a course recommender model which takes student characteristics into account to recommend appropriate courses. The model uses clustering to identify students with similar interests and skills...

متن کامل

An indirect adaptive neuro-fuzzy speed control of induction motors

This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. The uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of inducti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009